Cell Phones as Data Probes: Background & Recent US Wireless Experience

North America Traffic Monitoring Exhibition & Conference

Richard R. Mudge, Ph.D. President, Compass Services August 28, 2000

Why the New-Found Interest in Location Data?

- Regulatory: Federal Communication Commission Rule
 - Mandates wireless carriers to locate E911 calls by October 2001
 - Sets standards (within 100 meters 67% of time)
 - Choice of technology: network or handset based
- Transportation/ ITS
 - Congestion growing and traditional solutions have not met demand
 - Lack of meaningful data on system performance --travel times and speeds -- limits ability to manage system and does not provide individuals with information they need to make intelligent choices
 - Traffic data limited:
 - Some expressways; but very few arterials
 - Traffic sensors are unreliable and expensive
 - Not integrated across modes
 - Need to personalize: fit individual needs
- Location Commerce
 - Interaction between Internet and wireless phones
 - Add spatial interaction to economy



Electromagnetic noise degrades the accuracy of all position location techniques

- There are two predominant forms of electromagnetic noise:
 - Additive Gaussian Noise
 - Multiplicative Multipath Noise
- ◆ Additive Gaussian noise is present in all forms of communications. The typical approach to mitigation simply provides the desired transmission with sufficient power to overcome it.
- Multipath noise cannot be mitigated as such, since it derives from the energy of the original transmission; thus, increasing the transmitted power merely increases the undesired multipath.

Multipath noise derives when the transmitted electromagnetic wave reflects from myriad obstacles between the source (transmitter) and sink (receiver)

Pattern recognition based techniques solve the electromagnetic noise problem by matching its characteristics rather than trying to mitigate its effects

- These techniques "map" the actual multipath signatures and then match subscriber transmissions to the known patterns.
- This approach identifies locations based on their unique multi-path signature.
- In sum, pattern recognition makes multipath work on behalf of the system rather than leaving it to remain an interference.

The RadioCamera[™] employed by US Wireless Corporation is the only commercial pattern recognition technique

How the US Wireless System Works

- Advantages of a Network Solution
 - Passive: uses cell phones as anonymous data probes
 - Scalable: can cover every road and bus or rail route
 - Granular: can adjust data collection to fit individual needs
 - Digital: eases links with internet and wireless networks
 - Supports multiple markets
 - An order of magnitude less expensive to install than alternatives (see chart)
 - Real-time
 - Provides unique data archive for planning
 - Adaptable to future changes

What Information it Provides

- Speed by link
- Direction
- Acceleration are things getting better or worse?
- Location using existing cell phones or beacons
- Covers all roads expressways and arterials and beyond
- Covers all locations
 - Downtown
 - Inside Buildings (within limits)
 - Off Road
- Use low cost beacons to track vehicles and mobile assets
 - Buses, containers, repair trucks

The system generates direct measures of service quality for the traveling public, such as average speeds and link travel times

- Our building block approach allows for specification of links for
 - Block-by-block
 - Interchange-by-interchange
 - Milepost based
 - Combinations of the above
- It covers all relevant roadways
 - Interstates, and other expressways
 - Major arterials, as well as those with longer time periods
 - Special event sites (i.e., Stadia, convention centers)
- It can match a variety of time periods
 - Minute-by-minute aggregations
 - Specified peak busy hours
 - Any sort of averaging segment chosen
- As well as integration of data from other existing systems, such as road sensors, beacons, or GPS

Our network approach allows full coverage, realtime reporting, and consistency

- The RadioCamera™ Network obtains full geographic coverage of all roads
 - Including those not covered by sensors
 - Urban, rural and suburban
- It allows for focus on sub-regions, such as
 - Corridors
 - City Centers
 - Airports, sea ports, shopping centers, et al
- It provides for real time reporting measured in seconds
- It is consistent across all regions and roads

The system could provide a wide variety of digital data supporting reporting formats

- The reporting formats could range over
 - Maps
 - Specific indices, such as "traffic temperatures"
 - Made fully integrated with other systems
- The reporting formats could include other analytics, such as
 - Traffic volume estimates
 - Trip types
 - Statistics on commuter trips completed on time
 - O and D surveys
 - Predictive modeling
 - Patterns based on archival data
 - Statistics for day, season, weather conditions, etc.

Technology Cost Comparison

TECHNOLOGY	Total Capital	Annual O & M
Video Image Processor	\$8,370,000	\$135,000
Inductive Loop Detectors	\$3,825,000	\$216,000
Microwave Doppler Radar	\$3,345,000	\$108,000
Active Infrared	\$8,262,000	\$41,000
RadioCamera	\$1,400,000	\$216,000

- Study area covers 30 miles from Miami to Fort Lauderdale, including:
 - **•** I-95
 - Florida Turnpike
 - 210 miles of arterial roadways
- Assumes sensors are placed once per mile. Greater density increases costs for everything except RadioCamera.

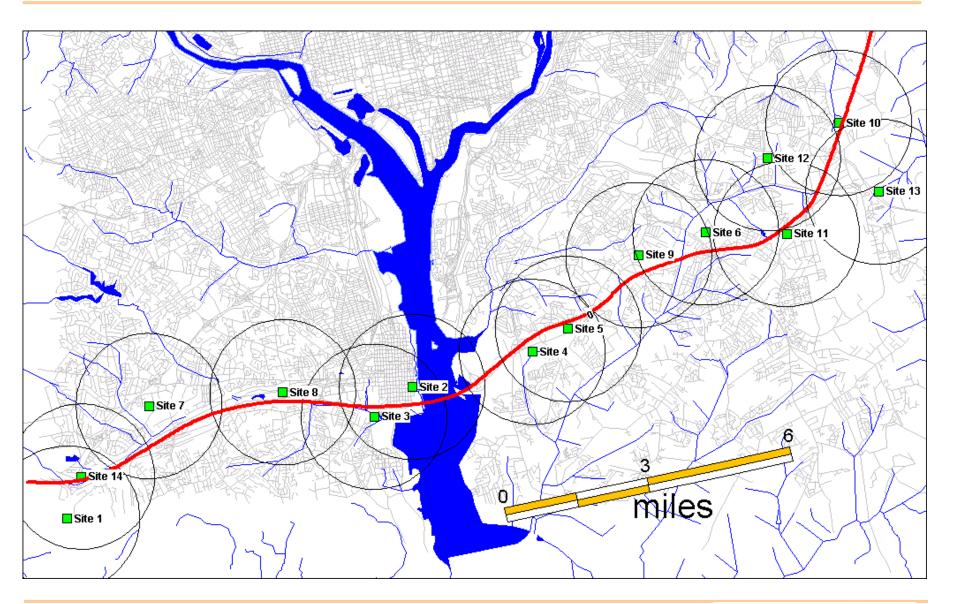
Source: PBS&J and US Wireless

Possible Uses

For Individuals

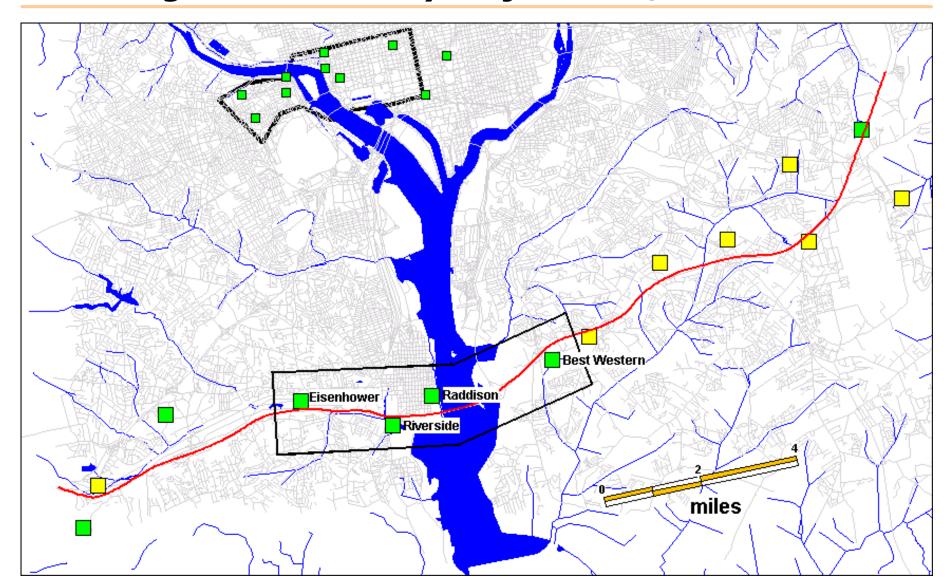
- Speeds for all roads
- Meaningful traffic data
- Travel time forecasts
 - For alternate routes
 - For all modes

For Public Agencies


- Speeds and travel times by link
- Performance measures
- Cost effective vehicle location and Asset Management
- Improved traffic flow

For Business

- Cost-effective vehicle location and Asset Management
- Link with supply chain management



Site Planning Diagram for Beltway Project (MD-VA)

Site Diagram for Beltway Project - VA/MD

Deployment Planned and Under Way

- Washington, DC
- Baltimore, MD
- Hampton Roads, VA
- Oakland, CA
- Seattle, WA
- Billings, MT
- San Diego, CA
- San Francisco and San Jose, CA
- New Hampshire Vermont Maine

Next Steps

- What Types of Location/Traffic Data are Needed?
 - Speeds, Travel Times; AVL; Mayday
 - Density of Detail
 - Geographic Coverage
- Select Locations for RadioCameras
 - Select General Locations
 - Identify Specific Sites
 - Negotiate Leases
- Installation
 - Install RadioCameras
 - Deploy Communications Link to Regional Hub
 - Calibrate Network
 - Test Software
- Finance
 - Pay me now cash or loan
 - Pay me later

Contacts

Richard Mudge, Ph.D.

President, Compass Services

12700 Sunrise Valley Drive

Reston, Virginia 20191

(703) 456-1882 phone

(703) 456-0542 fax

rmudge@uswcorp.com

Howard Blank, Ph.D.

Vice President, Compass Services

12700 Sunrise Valley Drive

Reston, Virginia 20191

(703) 456-1875 phone

(703) 456-0542 fax

hblank@uswcorp.com

